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We present algebraic solitary-wave solutions of a nonlinear Schrddinger equation that includes two
terms with power-law nonlinearity. Both bright and dark types are found. Numerical stability analyses
show that the solitary wave exhibits a solitonic feature.

PACS number(s): 03.40.Kf, 42.50.Rh

I. INTRODUCTION

It is now well known that many phenomena in contem-
porary physics can be explained in terms of solitons [1]
and, in certain cases, instantons [2]. Of a variety of mod-
el equations that predict the existence of solitonic solu-
tions, along with the Korteweg-de Vries (KdV) and the
sine-Gordon equations, the type that can be described by
a family of nonlinear Schrodinger equations (NLSE’s)
will be representative. With respect to the topological
structure, the transverse configuration, and the asymptot-
ic behavior in the far field, several classification methods
of solitonlike fields are possible. For instance, the second
classification consists of three categories: a bright, dark,
and kink (shock-wave) type. The dark (the topological)
type is classifiable further into a gray, black, and darker-
than-black solution [3]. A classification is also possible in
terms of whether or not the field profile is describable
with a combination of exponential functions, such as a
hyperbolic function. One may find that the majority of
solitary waves that have been found so far are attribu-
table to this family. An exception will be seen in what we
call algebraic (or rational) solitons. As the term indi-
cates, the field distribution of the algebraic solitons is ex-
pressed by a rational function such as a Lorentzian [4]
and, thus, they are localized more weakly than the famil-
iar hyperbolic-type solitons. To date, the Lorentzian soli-
tons (quasisolitons) have been found to exist in some
physical contexts. Initially, Zabusky presented this type
of soliton as a particular solution of a modified KdV
equation with a high-order nonlinear term [5]. Subse-
quently, Ono attempted to generalize this solution. Fur-
thermore, as a Lorentzian-shaped particular solution of
the Benjamin-Ono equation [6,7], Ono derived the similar
solution. Numerical experiments by Meiss and Pereira
verified the solitonic feature of the solitary wave [8]. In
the context of gap solitons, Mills presented a
Lorentzian-shaped solitonlike solution, termed a type-II
gap soliton, which could be sustained in nonlinear period-
ic structures within a frequency range near the lower
bound of the gap [9]. In a similar context, Grimshaw and
Malomed recently showed that at a certain value of the
wave velocity, gap solitons in a coupled KdV wave sys-
tem degenerate into algebraic solitons with a Lorentzian
intensity profile [10]. In the study of self-induced tran-
sparency of intensified electromagnetic radiation in a
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three-level medium, it was pointed out by Belenov and
Poluéktov that a radiation pulse with the Lorentzian-
shape intensity could propagate undistorted in the pres-
ence of two-photon resonances [11]. Hanamura attempt-
ed to modify their theory and arrived at the conclusion
that in the same situation only the semistable Lorentzian
pulse is possible [12]. Aside from ordinary solitons men-
tioned above, Lorentzian-shaped quasi-particle-like fields
termed instantons or Euclidean gauge solitons were
discovered by Polyakov and t’ Hooft in the context of
quantum field theory [13]. Aside from their close
relevance to the quantum mechanical tunneling and the
quantum chromodynamics, a classical interpretation of
the instantons may be adoptable as a four-dimensional
“static’” solitonlike entity that is localized upon a limited
volume in the space time [2]. We predict in this paper
the existence of a new algebraic solitonic solution
through discovery of a particular solution of a NLSE that
includes two power-law nonlinear terms. Both bright
(nontopological) and dark (topological) types are present-
ed. For the latter, a unique algebraic solitary-wave field
with non-Lorentzian shape is predicted. Numerical sta-
bility analyses show that the solitary wave exhibits a soli-
tonic feature.

II. ALGEBRAIC SOLITARY-WAVE SOLUTIONS

First we consider a generic version of a NLSE that in-
cludes two power-law nonlinear terms

iuy g~y lulPu+y,|ul?u=0, (1

where u is the complex field amplitude that depends on x
and ¢ [u=u(x,t)], v; (j=1,2) is a nonvanishing real
constant corresponding to the coefficient of |u |Pu, and p
is a natural number that indicates the order of nonlinear-
ity. We know that Eq. (1), especially that with lower p
values, appears in various branches of contemporary
physics [1,2]. For instance, in nonlinear optics the case
of p =2 appears most important since it can model a
non-Kerr-type nonlinearity with saturation [14]. For this
p value, a bright-type solution that is expressed with a hy-
perbolic (i.e., a nonalgebraic) function was already
presented in the literature [1,14]. For p =1, in the con-
text of solitary-wave polaritons, both bright and dark
solutions of the hyperbolic type were recently given by us
[15]. In these cases the “time” variable ¢ in Eq. (1) should
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be interpreted as a longitudinal (a wave propagation) axis.
The other variable x is then either a retarded time (soli-
ton pulses) or a transverse spatial axis (spatial solitons).

Through a heuristic manner, we have found that solely
for p =1 and p =2, Eq. (1) admits of algebraic solitary-
wave solutions: When p =1 (quadratic-cubic nonlineari-
ty), for a bright-type algebraic solitary-wave solution we
have obtained

u(x,t)=uyL(x;a,1), (2a)
with

uy=6a/y,, a=2xyi/y,y, (2b)
while for a dark-type counterpart, we have derived

u(x,t)=uo|L(x;a,1)—3|exp(iBt) , (3a)
with
uo=12a/y,, B=—9a/2, a=%ri/y, . (3b)

In the case of p =2 (cubic-quintic nonlinearity), we have
obtained a bright-type algebraic solitary-wave solution

ulx,t)=uol(x;a,%), (4a)
with
uy=tQa/y)"?, a=3y1/v1), (4b)

as well as a dark-type solution

u(x,t)=uoxL(x;a,L)exp(ipt) , (5a)
with

u,=+(6/y ) ?a, B=—3a, a=Lyi/vy) . (5b)

In Egs. (2)-(5) the symbol L(x;a,q) indicates an ex-
tended version of the Lorentzian, which is defined by

L(x;a,q)=(ax?+1)"9 for a>0, ¢ >0, (6)

where 2a~!/? estimates a full width (being a measure of
localization) of the intensity profile, and the parameter g
outlines a detail of the profile. The distribution function
becomes gradual with decreasing g. With ¢ =1, Eq. (6)
coincides with the exact Lorentzian (super Lorentzian for
g > 1, sub-Lorentzian for g <1). The solitary-wave solu-
tions of Egs. (2a) and (4a) are bright (nontopological),
while those given by Egs. (3a) and (5a) are dark (topologi-
cal). It should be emphasized here that the topological
structure as well as the parity of the two dark fields are
radically different. The former [Eq. (3a)] exhibits even
symmetry across the center (x =0), and the profile varies
abruptly across x ==+(3a)”!”2. In contrast to this, like
the dark soliton of the cubic NLSE, the latter [Eq. (5a)] is
antisymmetric across the center, which results in the to-
tal phase shift ¢, = (black type). We would like to
stress here that the dark-type algebraic solitary-wave
solution may be unique to the NLSE of Eq. (1).

III. NUMERICAL SIMULATIONS

To evidence the solitonic feature of the present alge-
braic solitary waves, numerical simulations have been
performed with a computational tool previously
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FIG. 1. Propagation of algebraic solitary wave (p =1) along
the longitudinal (the ¢) axis. (a) Bright type and (b) dark type.
In both types the parameters in Eq. (1) are set to be y,=y,=1.
The solitary-wave field of (a) Egs. (2) and (b) Eqgs. (3) is launched
at t =0. The total propagation “time” attains 5, which coin-
cides with ten soliton units, where one soliton unit is taken to be
/2.

developed by us [16]. Example results are shown in Figs.
1 and 2 for p =1 and p =2, respectively. In all cases, the
solitary wave being input at ¢ =0 is stable and remains
unchanged even after the propagation over sufficiently
long “times” that attain ten soliton units. Through a
Wick rotation, t — —it’, the paraxial wave equation, Eq.
(1), can be translated formally into a reaction-diffusion
(an extended Ginzburg-Landau) equation

— v+ v —vlvPo+y,lv[*Pv —Bv=0, (7)

where v(x,t’) stands for the slowly varying part of
u(x,t'). Indeed this type of model equation will appear
in various contexts of condensed matter physics and of
cross-disciplinary physics such as chemical kinetics far
from equilibrium, biophysics, and mathematical biology
[17]. Numerical experiments with input of the holelike
fields [Egs. (3) and (5)] at ¢t’=0 have shown the same re-
sults as Figs. 1(b) and 2(b), respectively. However, in

(a)

(b)

FIG. 2. Same as Fig. 1, but p =2. (a) Bright type and (b)
dark type. The parameters in Eq. (1) are set to be (a) y,=y,=1
and (b) ¥,=6, y,=3. The solitary-wave field of (a) Egs. (4) and
(b) Egs. (5) is launched at ¢t =0.



51 ALGEBRAIC SOLITARY-WAVE SOLUTIONS OF A NONLINEAR ... 1501

contrast to such stability of the holes, as might be expect-
ed from the Ginzburg-Landau theory, the results for the
droplike excitations [Eqgs. (2) and (4)] have exhibited a
strong decay.

IV. COMPARISON WITH NONALGEBRAIC
SOLITARY-WAVE SOLUTIONS

To elucidate the unique features of the algebraic
solitary-wave solutions presented in Sec. II, in this sec-
tion we review the corresponding nonalgebraic solitary-
wave solutions for the NLSE [Eq. (1)], which are ex-
ponentially localized. In the context of quantum field
theory, nonalgebraic bright solitonlike solutions of Eq. (1)
were presented for p =1 (¢*>—¢* theory) [2] and for p =2
(¢*— ¢° theory) [1].

For p =1, as a special solution of Eq. (1) we write [2]

u(x,t)=uy[(b*—4ac)*cosh(a'’?x)+b] 2exp(iBt) ,

(8a)
with

uy=2a, B=a, b=-—2y,/3, c=—vy,/2, (8b)

where a@>0 and b%>4ac (.., uy>0, >0, and y?

> —9By,/2). In Eq. (1), ¥, may be positive or negative,
but to ensure the nonsingularity, for >0, ¥, must also
be positive. This is in contrast with the algebraic coun-
terpart [Egs. (2)] where y, must be positive irrespective
of the sign of y;. A rather essential difference between
the algebraic and the nonalgebraic solutions arises in the
limit of y,—0. As is obvious from Eq. (2b), in this limit,
|ug|— 0 and a~!'”2—0, which results in a spiky shape
with a 8-functionlike singularity at the center (x =0). In
sharp contrast to this singularity, for the nonalgebraic
solution [Egs. (8)], as y,—0, it approaches the funda-
mental bright-soliton solution for the quadratic non-
linearity

u(x,t)=ugsech’(ax )exp(ift) , (9a)
with
uy=—6a>/y,, B=4a>. (9b)

Here ¥, may be positive or negative [18]. Note that only
recently was the exponentially localized solution of Egs.

(8) discussed in the context of radiation-matter interac-
tions in far-infrared electromagnetic transients [15].
For p =2, we obtain [1,14]

ul(x,t)=ug[v'"2cosh(2B8'%x )+ 1] 2exp(ift) , (10a)

with

ug=(—4B/y )V*, v=1+2%(y,/v}8B, (10b)

where uy,>0, >0, v>0, ¥,<0, and y,> —(%)(y%/ﬁ).
Note that Eq. (4b) predicts |uy|— o and o '/2—0 as
¥,—0, which takes the form of a spike with the singular-
ity at the center. In sharp contrast to this, for the
nonalgebraic solution [Egs. (10)], as y,—0, it approaches
the familiar fundamental bright-soliton solution

u(x,t)=uqysech(ax exp(ift) , (11a)

with

ug=+t(—2/y )\ ?a, B=a’. (11b)
Note that in the context of nonlinear optics [14], the solu-
tion of Eq. (10) was used for studying high-intensity
laser-beam (-pulse) propagation in cubic-quintic nonlinear

optical media.

V. CONCLUSIONS

We have shown that there exist algebraic solitary-wave
solutions for a nonlinear Schrodinger equation. Both
bright and dark types have been presented. Numerical
stability analyses have shown that the present algebraic
solitary waves exhibit, as was expected, a solitonic
feature. Their unique features have been elucidated
through comparison with the conventional nonalgebraic
solitary waves with an exponential tail.
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